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1. 

Various solution methods have been developed for static and dynamic problems of plates,
among which are the finite element method, finite difference method, finite strip method,
Fourier-Bessel series technique, Rayleigh-Ritz method, Galerkin method, and assumed
modes method [1–7]. Although the finite element method, as a powerful numerical tool,
has met with great success in engineering applications, analytical solutions are always
desirable, for the latter are more accurate and provide physical insight into the problem.
Recently, a semi-analytical method, called the Strip Distributed Transfer Function Method
(SDTFM), was developed for modeling and analysis of two-dimensional elastic continua
composed of rectangular subregions [8, 9].

In this letter, the concept of SDTFM is extended to plates that are confined in circular
or sectorial regions. The major thrust of SDTFM is to combine the high accuracy of
analytical solutions, and the flexibility of the finite element method in modeling complex
geometry and arbitrary boundary conditions. Furthermore, the method delivers
closed-form solutions without using truncated series of particular comparison or
admissible functions, and therefore is capable of precisely modeling of abrupt changes in
system properties and disturbance distributions. The numerical examples reveal many
advantages of SDTFM.

2. 

The sectorial plate in Figure 1, in the polar co-ordinate system, is confined in the domain

{(r, u, z) = R0 E rER1,−u0 E uE u0,−0·5h(r)E zE 0·5h(r)}, (1)

where 2u0 is the angle subtended by the sector, and h(r) is the thickness of the plate. Here
h is allowed to vary along the radial direction, but is constant in the circumferential
direction. For a circular plate, 2u0 =2p. In analysis of a circular/sectorial plate, the
proposed SDTFM takes three major steps: (a) interpolation of the plate deflection in terms
of nodal line displacements; (b) derivation of the governing equations of the nodal line
displacements; and (c) determination of the nodal line displacements and plate responses
by strip distributed transfer functions. These steps are briefly discussed as follows.

The plate is divided into NS strips by NS+1 circumferential lines, see Figure 1, where
rj is the radius of the jth line. These lines are called nodal lines and their ends are named
nodes. The jth strip, bounded by the jth and ( j+1)th nodal lines, is defined by

Vj = {(r, u) = rj E rE rj+1,−u0 E uE u0}, (2)
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whose width bj = rj+1−rj . To increase the accuracy of displacement interpolation, internal
nodal lines can be introduced within a strip. The transverse displacement of the jth strip
of the plate is interpolated in the radial co-ordinate

w(r, u, t)= [Nw (r)]{Wj (u, t)], (r, u)$Vj , (3)

where [Nw (r)] is the shape function matrix. The vector {Wj (u, t)} contains the unknown
displacement parameters on the nodal lines of the jth strip. For instance, in a cubic
interpolation without internal nodal line displacements,

[Nw ]= [1−3j2 +2j3 bi (j−2j2 + j3) 3j2 −2j3 bi (−j2 + j3)], (4)

{Wj (u, t)}= {wj (u, t) bj (u, t) wj+1(u, t) bj+1(u, t)}T, (5)

where j=(r− ri )/bi , and

wj (u, t)=w(rju, t), bj (u, t)= (1/1r) w(r, u, t) =r= rj (6)

are the displacement and rotation of the plate on the jth nodal line, respectively.
Assume that the plate is made of linear elastic material under small deformation. The

Hamilton principle for the plate is
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Figure 1. A sectorial plate divided into strips.
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where {k} is the curvature vector of the form [4]

{k}=6−12w
1r2 −

12w
r2 1u2 −

1w
r1r

−
2
r

12w
1r 1u

+
2
r2

1w
1u7

T

, (8)

[D] is the bending stiffness matrix, r is the density per unit area, q is the transverse external
force applied on the neutral surface of the plate, Q� u , M� u and M� ru are the shear force,
bending moment and torsional moment on the boundaries u=2u0, respectively, and d

denotes variation of the displacement function.
Substituting equation (3) into equation (7) and conducting the variation, one obtains

the partial differential equation governing the nodal line displacements [8, 9]:

0[M]
12

1t2 + s
4

i=0

[Ki ]
1i

1ui1 {F(u, t)}= {Q(u, t)}, −u0 E uE u0, (9)

where the constant matrices [M] and [Ki ] describe the inertia and stiffness of the plate,
{Q(u, t)} is the nodal line force vector, and {F(u, t)} is the global nodal line displacement
vector consisting of all independent nodal line displacements of the NS strips. Without loss
of generality, assume zeros initial conditions for the plate. Taking the Laplace transform
of equation (9) with respect to t, and casting the resulting equation in a first-order, spatial
state-space form [8, 9] yields

(d/du){h(u, s)}=[F(s)]{h(u, s)}+ {f(u, s)}, −u0 E uE u0, (10)

where s is the Laplace transform parameter; the state-space matrix [F(s)] and the load
vector {f(u, s)} are derived from the inertia and stiffness matrices and the nodal line force
vector in equation (9), respectively, and the state-space vector

{h(u, s)}= {F
 T(u, s)(d/du)F
 T(u, s) (d2/du2)F
 T(u, s)(d3/du3)F
 T(u, s)}T, (11)

with F
 (u, s) being the Laplace transform of {F(u, t)}. The boundary conditions of the
nodal line displacements are specified at the nodes of the nodal lines. Following the above
derivation, these boundary conditions are cast in the form

[Mb (s)]{h(−u0, s)}+[Nb (s)]{h(u0, s)}= {g(s)}, (12)

where the boundary matrices [Mb (s)] and [Nb (s)] are constant matrices, and the vector
{g(s)} describes the given boundary disturbances [8, 9].

The solution of the state-space equations (10) and (12) is in exact and closed form [10]

{h(u, s)}=g
u0

−u0

[G(u, z, s)]{f(z, s,)} dz+[H(u, s)]{g(s)}, (13)

where

[G(u, j, s)]=6[H(u, s)][Mb (s)] e−[F(s)](u0 + z), jE u

−[H(u, s)][Nb (s)] e[F(s)](u0 − z), je u,
(14a)

[H(u, s)]=e[F(s)]u([Mb (s)] e−u0[F(s)] + [Nb (s)] eu0[F(s)])−1. (14b)

The matrices [G(u, z, s)] and [H(u, s)] are termed the strip distributed transfer functions
of the circular/sectorial plate.
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Figure 2. Sectorial plates: (a) System I—a clamped-simply supported semi-circular plate; and (b) System II—a
clamped quarter annular sector, =OB==(R0 +R1)/2.

The distributed transfer function formulation is convenient in predicting the response
of the plate. The static response of the plate is obtained by equation (13) with s=0; the
dynamic response to a harmonic excitation of frequency v is found by setting s= Jv,
J=z−1, in equation (13). In free vibration analysis, the characteristic equation of the
plate is

det ([Mb (s)] e−u0[F(s)] + [Nb (s)] eu0[F(s)])=0 (15)

whose roots are the eigenvalues of the plate.

3.  

The SDTFM is illustrated on two plate systems shown in Figure 2: (a) System I—a
clamped-simply supported semi-circular plate subject to a transverse load P at point A
(u=0, r=R1/2); and (b) System II—a clamped quarter annular sector (2u0 = p/2) subject
to a transverse load P at point B (u=0, r=(R0 +R1)/2). Both plates are isotropic,
and of uniform thickness. The plate parameters are chosen as R0 =20, R1 =100, h=1,
E=106, y=0·3, where h is plate thickness, E is Young’s module, and y is Poisson’s
ratio.

Static deflections and natural frequencies are calculated by SDTFM with strips of equal
width and the cubic strip displacement interpolation given in equations (4) and (5), and
by the finite element method (FEM). Figure 3 shows the static deflection of System I (the
semi-circular plate) along the circumferential line r=R1/2. Figure 4 shows the static
deflection of System II (annular sector) along the circumferential line r=(R0 +R1)/2.
Since exact solutions are not available, the predictions by FEM with dense meshes (24×64
and 32×32 elements for Systems I and II, respectively) serve as reference solutions. With
just fourth strips, the results obtained by SDTFM are in good agreement with the reference
solutions. Even two strips are accurate enough.

In free vibration analysis, the first 10 natural frequencies are computed, and listed in
Tables 1 and 2. The accuracy of SDTFM is surprisingly high. For System I (Table 1), the
fourth strip SDTFM prediction has a maximum deviation of 1·2% from the reference
solution, which is obtained by FEM with a 16×64 mesh (1,024 elements). However, FEM
with the less dense 4×16, 6×24 and 8×32 meshes leads to much larger deviations of
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Figure 3. Static deflection of the semi-circular plate (System I) at r=R1/2: ——, FEM of 24×64 elements;
+++, SDTFM of 2 strips; w w w, SDTFM of 4 strips.

31·4%, 19·1% and 9·6%, respectively. Note that 4-strip prediction is more accurate than
the reference solution, since the natural frequencies calculated by SDTFM are less than
those by FEM. The 6-strip prediction has even higher precision.

Figure 4. Static deflection of the annular sector (System II) at r=(R0 +R1)/2: ——, FEM of 32×32 elements;
+++, SDTFM of 2 strips; w w w, SDTFM of 4 strips.
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T 1

Natural frequencies of the semi-circular plate, System I

Mode SDTFM SDTFM FEM FEM FEM FEM
no. 4 strips 6 strips 4×16 mesh 6×24 mesh 8×32 mesh 16×64 mesh

1 0·5903 0·5901 0·6428 0·6055 0·5986 0·5920
2 0·9522 0·9513 1·0191 1·9818 0·9683 0·9552
3 1·4116 1·4105 1·5383 1·4701 1·4442 1·4184
4 1·7790 1·7723 2·1606 1·9520 1·8721 1·7951
5 1·9559 1·9538 2·1749 2·0587 2·0133 1·9676
6 2·4290 2·4127 2·9309 2·6801 2·5619 2·4460
7 2·4290 2·4127 2·9309 2·6801 2·5619 2·4460
8 3·1865 3·1681 3·8048 3·5420 3·3932 3·2198
9 3·2748 3·2685 3·9368 3·5623 3·4273 3·3069

10 3·6166 3·5642 4·8091 4·3585 4·0094 3·6596

For System II, similar conclusions can be drawn from Table 2. Although Tables 1 and
2 only list the first 10 natural frequencies, further numerical simulation indicates that
SDTFM is even more accurate than the FEM in predicting higher-order natural
frequencies.

4. 

The strip distributed transfer function method for analysis of circular and sectorial plates
has been presented. With its semi-analytical form, SDTFM is much more accurate than
the finite element method in predicting the static deflection and natural frequencies of
circular and sectorial plates. Like the finite element method, SDTFM is versatile in
modelling complex geometry and various boundary conditions of plate structures, which
is difficult for many existing analytical or semi-analytical methods. While the thin plate
theory is used in this study, the proposed method can be easily extended to other plate
theories. Moreover, SDTFM can further increase its accuracy by introducing higher-order
interpolation models. Additionally, SDTFM is applicable to complex plate structures
composed of multiple circular/sectorial subregions [9].

T 2

Natural frequencies of the annular sector, System II

Mode SDTFM SDTFM FEM FEM FEM FEM
no. 4 strips 6 strips 4×4 mesh 8×8 mesh 16×16 mesh 32×64 mesh

1 1·5241 1·5226 1·6162 1·5514 1·5292 1·5227
2 2·6615 2·6586 3·0212 2·7984 2·6937 2·6597
3 3·4804 3·4567 3·8479 3·6232 3·4940 3·4596
4 4·1556 4·1469 3·8893 4·5996 4·2651 4·1515
5 5·0325 5·0121 4·8714 5·3623 5·1012 5·0179
6 5·9435 5·9219 5·6212 6·3347 6·2171 5·9331
7 6·4031 6·3094 7·0808 6·8958 6·4337 6·3089
8 7·1800 7·1410 7·6215 6·9984 7·3720 7·1541
9 8·0295 7·9811 9·0179 7·9760 8·2625 8·0037

10 8·1748 8·0619 12·504 8·8788 8·5985 8·0673
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